
Logical Preliminaries

Johannes C. Flieger

Scheme UK

March 2003

Abstract

Survey of intuitionistic and classical propositional logic; introduc-
tion to the computational interpretation of intuitionistic logic in the
form of the Curry-Howard Isomorphism.

1 Introduction

These are the notes for the first of a series of brief, informal talks on
resource logics, functional programming, and sundry related matters,
held under the auspices of Scheme UK. The aim of these talks is to
impart enough working knowledge of basic concepts, terminology, and
notation to approach the literature with a modicum of confidence, and
to impress relatives at family gatherings.

This first session covers certain elementary logical notions, and
is intended to be a guerilla introduction to logic for those relatively
new to it, as well as a refresher for those who have blocked out the
traumatic memory of their first encounter with the subject. For those
familiar with the material, it will serve to fix terminology and notation
for future sessions.

2 Propositional Logic

Definition 1 (Deductive system) A deductive system S is a pair

S = 〈L,R〉

such that

1

• L is a formal language consisting of countably many formulae,

and

• R is a set of rules of inference.

2.1 Language

We shall base our language on a symbolic repertoire comprising three
kinds of symbols:

Propositional Parameters: p, q, r, . . . , p1, q1, r1, . . .

Propositional Constants: ⊥

Propositional Connectives: →,∧,∨

We employ lowercase Greek letters α, β, γ, . . . , α1, β1, γ1, . . . as metavari-
ables over formulae, and Greek capitals Γ,∆,Σ, . . . ,Γ1,Γ2,Σ1, . . . to
denote (finite) sequences of formulae. The notation Γ, α denotes the
result of appending one more occurrence of α to the sequence Γ, and
Γ,∆ denotes the result of appending the sequence ∆ to the sequence
Γ.

We construct propositional formulae inductively as follows:

Definition 2 (Formulae of Propositional Logic)

1. All propositional parameters and propositional constants are for-

mulae.

2. If α is a formula and β is a formula, then (α2β) is a formula,
for 2 ∈ {∧,∨,→}.

3. Nothing else is a formula.

Other connectives and the constant > are defined as abbreviations:

¬α
def
= (α→ ⊥)

>
def
= ¬⊥

(α↔ β)
def
= ((α→ β) ∧ (β → α))

2.2 Inference Rules

Definition 3 (Sequent) A sequent has the form Γ ` ϕ, and is read
as ‘The truth of ϕ follows from the truth of Γ’, or ‘From Γ we can

conclude that ϕ’, or simply ‘Γ entails ϕ’.

2

A derivation is a rooted tree whose nodes are labelled by judgements.
A rule consists of zero or more judgements written above a line, and
a single judgement below it; if all the judgements above the line are
derivable, then the judgement below is also derivable.

2.2.1 Axioms

Definition 4 (Id)

α ` α Id

2.2.2 Rules for Logical Constants and Connectives

Definition 5 (∧I)

Γ ` α ∆ ` β

Γ,∆ ` (α ∧ β) ∧I

Definition 6 (∧E)

1.
Γ ` (α ∧ β)

Γ ` α ∧E

2.
Γ ` (α ∧ β)

Γ ` β ∧E

Definition 7 (∨I)

1.
Γ ` α

Γ ` (α ∨ β) ∨I

2.
Γ ` α

Γ ` (β ∨ α) ∨I

Definition 8 (∨E)

Γ ` (α ∨ β) ∆ ` (α→ θ) Σ ` (β → θ)

Γ,∆,Σ ` θ ∨E

Definition 9 (→I)
Γ, α ` β

Γ ` α→ β →I

3

Definition 10 (→E)

Γ ` (α→ β) ∆ ` α

Γ,∆ ` β →E

Definition 11 (EFSQ)

Γ ` ⊥

Γ ` α EFSQ

2.2.3 Structural Rules

Definition 12 (Exchange)

Γ, α ` β

α,Γ ` β Exchange

Definition 13 (Weakening)

Γ ` β

Γ, α ` β Weakening

Definition 14 (Contraction)

Γ, α, α ` β

Γ, α ` β Contraction

• Exchange expresses that the order of the premises is irrelevant.

• Weakening expresses that any premise may be discarded.

• Contraction expresses that any premise can be duplicated.

2.2.4 Alternative Rules for Conjunction and Disjunc-

tion Elimination

There are alternative formulations of several of the rules of inference
given above. For example, an alternative rule of conjunction elimi-
nation can be derived from the version of ∧E given above, using the
structural rules of Weakening and Exchange:

Definition 15 (∧E)

Γ ` (α ∧ β) ∆, α, β ` θ

Γ,∆ ` θ ∧E

4

An alternative rule of disjunction elimination can be derived from the
version of ∨E given above:

Definition 16 (∨E)

Γ ` (α ∨ β) ∆, α ` θ Σ, β ` θ

Γ,∆,Σ ` θ ∨E

3 From Intuitionistic to Classical Logic

The addition of any of the following (interderivable) rules to our in-
tuitionistic system yields a system of classical propositional logic:

Definition 17 (Law of Excluded Middle)

` α ∨ ¬α EM

Definition 18 (Dilemma)

Γ, α ` θ ∆,¬α ` θ

Γ,∆ ` θ D

Definition 19 (Reductio ad Absurdum—RAA)

Γ,¬α ` ⊥

Γ ` α RAA

Definition 20 (Double Negation)

Γ ` ¬¬α
Γ ` α DN

4 Proofs and Programs

Intuitionistic logic may be viewed as that part of classical logic that
admits of an effective interpretation, and which exhibits a correspon-
dence between proofs and programs.

We can obtain a more exact analysis of proofs by treating them
as first-class entities. To that end, we introduce proof objects into
our derivations. We denote proof objects by terms which encode the
structure of the proof. In this system, a statement is a pair x : ϕ of
a term x and a (propositional) formula ϕ, and is read as ‘x is a proof
of proposition ϕ’.

5

4.1 The Language of Terms

It turns out that a language based on the (simply-typed) λ-calculus is
particularly well-suited to representing the structure of proof objects.
We assume the availability of countably many variables x1, x2, x3, . . .

which may be used to refer to proofs of any proposition ϕ; the propo-
sition ϕ can be thought of as the type of its proofs. In order to keep
track of the type of the proof referred to by the variable, we will
sometimes explicitly write the type as a superscript: xϕ

1
, x

ϕ
2
, x

ϕ
3
, . . .

Let u,v,. . . ,y,z range over variables and a,b,c,. . . ,s,t, range over
terms. Then the language of terms is defined by

t ::= x | λx.f | (f g) | (f, g) | (inl f) | (inr f) | (cases f g h) | (abort f)

Premises are written as

x1 : ϕ1, . . . , xn : ϕn

where x1, . . . , xn are variables, ϕ1, . . . , ϕn are propositions, and n ≥ 0.
We shall require that the variables x1, . . . , xn in a sequence be distinct ;
note that this extends also to concatenations of premises, so that in
a concatenation Γ,∆, we shall require that Γ and ∆ contain distinct
variables.

4.2 Inference Rules Revisited

4.2.1 Axioms

Definition 21 (Id)

x : α ` x : α Id

4.2.2 Rules for Logical Constants and Connectives

Definition 22 (∧I)

Γ ` s : α ∆ ` t : β

Γ,∆ ` (s, t) : (α ∧ β) ∧I

Definition 23 (∧E)

1.
Γ ` t : (α ∧ β)

Γ ` (fst t) : α ∧E

6

2.
Γ ` t : (α ∧ β)

Γ ` (snd t) : β ∧E

Definition 24 (∨I)

1.
Γ ` t : α

Γ ` (inl t) : (α ∨ β) ∨I

2.
Γ ` t : α

Γ ` (inr t) : (β ∨ α) ∨I

Definition 25 (∨E)

Γ ` t : (α ∨ β) ∆ ` f : (α→ θ) Σ ` g : (β → θ)

Γ,∆,Σ ` (cases t f g) : θ ∨E

Definition 26 (→I)

Γ, x : α ` f : β

Γ ` λxα.f : (α→ β) →I

Definition 27 (→E)

Γ ` f : (α→ β) ∆ ` g : α

Γ,∆ ` (f g) : β →E

Definition 28 (EFSQ)

Γ ` t : ⊥

Γ ` (abortα t) : α EFSQ

4.2.3 Structural Rules

Definition 29 (Exchange)

Γ, α ` t : β

α,Γ ` t : β Exchange

Definition 30 (Weakening)

Γ ` t : β

Γ, x : α ` t : β Weakening

Definition 31 (Contraction)

Γ, x : α, y : α ` t : β

Γ, u : α ` t[x := u, y := u] : β Contraction

7

4.3 Reduction Rules

Given a system of terms representing proof objects, we can provide a
set of rules over terms which represent proof reduction:

Definition 32 (Reduction Rules)

projection operators

(fst (x, y)) Ã x

(snd (x, y)) Ã y

cases operator

(cases (inl x) f g) Ã (f x)
(cases (inr x) f g) Ã (g x)

β-reduction
((λx.y) z) Ã y[x := z]

4.4 Curry-Howard Isomorphism

There a correspondence between the typed λ-calculus and construc-
tive logic (‘Curry-Howard Isomorphism’), under which propositions
correspond to types and proofs correspond to members of those types
(pairs, functions, etc.). The rules of constructive logic can be re-
interpreted as rules of program construction in a typed functional
programming language: under this interpretation, the linguistic for-
mation rules define what the types of the programming language are,
the introduction and elimination rules define which expressions belong
to which types, and the proof reduction rules define how expressions
can be evaluated. The pair x : ϕ, which earlier we read as ‘x is a
proof of proposition ϕ’, is read under this interpretation as ‘x is (an
expression) of type ϕ’.

4.5 Expressiveness and Fixpoints

The typed term calculus is strictly less expressive than the untyped λ-
calculus (note that every typed term has a normal form). In order to
recover the ability to express every computable function, we add, for
every type ϕ, a general recursion operator fixϕ of type ((ϕ→ ϕ)→ ϕ):

fixϕ : ((ϕ→ ϕ)→ ϕ)

8

together with the reduction rule

(fixϕ f)Ã (f (fixϕ f))

so that (fixϕ f) is a fixed point of the (functional) term f .
Note that a term containing this operator may not have a normal

form, even if it is well-typed. In particular, we can derive the judge-
ment ` (fixϕ λx.x) : ϕ for every type ϕ, but this expression has no
normal form:1

(fixϕ λx.x) Ã (λx.x (fixϕ λx.x))
Ã (fixϕ λx.x)
Ã (λx.x (fixϕ λx.x))
Ã (fixϕ λx.x)
Ã . . .

5 Conclusion

In the next session, we introduce the view of premises as resources,
and discuss the central motivations of relevance logic and linear logic.

1Note that this judgement is interpreted logically as an assertion that (fixϕ λx.x) is a
proof of ϕ, for any proposition ϕ. So, the absence of a normal form in this case should be
viewed as a good thing.

9

