
Virtual Hardware

or Virtue and Virtuality

John Kozak

jk@xylema.org

1

Introduction

Project of six years ago

Source lost

All I have is memories

Trip around dusty corners

like win95, VxDs, parallel ports

2−6

Problem and Solution

Problem: how to talk to a non-existent peripheral?

Solution: use a non-existent CPU!

Want a scriptable emulator

7−9

Emulator Types

Hypervisor

e.g. VM/370, VMware

Interpreter

e.g. bochs, usim

Dynamic Translation

e.g. FX!32, Dynamo

10−13

Emulator Issues

Emulating CPU is relatively easy

well and accurately documented

(N.B. i386 presents special challenges for hypervisors)

Emulating peripherals can be horrible

underspecified or mis-implemented

big variance in implementations

14−20

Emulators: PC on PC

VMware

hypervisor

fast, solid

closed, no SDK

bochs

interpreter

slower, less stable/complete

free software

others?

not then...
21−24

bochs.sf.net Blurb

Bochs is a highly portable open source IA-32 (x86) PC emulator written in C++, that runs on
most popular platforms. It includes emulation of the Intel x86 CPU, common I/O devices, and
a custom BIOS. Currently, Bochs can be compiled to emulate a 386, 486, Pentium, Pentium
Pro or AMD64 CPU, including optional MMX, SSE, SSE2 and 3DNow instructions.

Bochs is capable of running most Operating Systems inside the emulation including Linux,
Windowsfi 95, DOS, and Windowsfi NT 4. Bochs was written by Kevin Lawton and is
currently maintained by this project.

 Bochs can be compiled and used in a variety of modes, some which are still in
development. The’typical’ use of bochs is to provide complete x86 PC emulation, including
the x86 processor, hardware devices, and memory. This allows you to run OS’s and
software within the emulator on your workstation, much like you have a machine inside of a
machine. For instance, let’s say your workstation is a Unix/X11 workstation, but you want to
run Win’95 applications. Bochs will allow you to run Win 95 and associated software on your
Unix/X11 workstation, displaying a window on your workstation, simulating a monitor on a
PC.

25

bochs - My Views

great for systems programming

performance not up to all production uses, yet

really odd code

.cc files

premature optimisations ‘R’ us

bizarre config system

very impressive piece of work, but really wants to be a library

26−33

SCM - why?

ran on windows with reasonable FFI (SCM/w)

clean C/scheme interface

interpreter

setjmp / longjmp and stack-copying

conservative GC

native thread support (avoids synchromesh problem)

34−36

Making bochs Scriptable from SCM

disable various bochs optimisations

build bochs as a library (DLL)

call via FFI

37−40

Driving bochs from Scheme

(define (make−single−byte−device! port name)

 (letrec ((byte 0)

 (writer (lambda (addr value len)

 (set! byte value)))

 (reader (lambda (addr len)

 byte)))

 (register−iowrite−handler writer port name 1)

 (register−ioread−handler reader port name 1)))

(make−single−byte−device! 384 "demo s/b/d 1")

(make−single−byte−device! 385 "demo s/b/d 2")

41

Other Uses

scriptable low-level debugger

higher-level logic analyser

security analysis

fault emulation

randomised testing

42−47

Notations for Hardware

how to describe hardware?

VHDL

various nice formal methods offerings

timing diagrams are what you get in practice

48−51

Timing Diagrams

IOW

WRITE

DATA-STROBE

WAIT

DATA

0 1 2 3 4 5 6

52

ASCII Art Timing Diagrams
name: EPP−data−write

spec: EPP

 | 1 2 3 4 5 6 7 |

> −iow* |¯_____________/¯¯¯|

> −write |¯¯¯___________/¯¯¯|

> −data−strobe |¯¯¯¯¯_____/¯¯¯¯¯¯¯|

< −wait |________/¯¯¯¯_____|

> data | |

53

ASCII Art Timing Diagrams
name: EPP−address−read

spec: EPP

 | 1 2 3 4 5 |

> −write |¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯|

> −addr−strobe |¯¯¯¯¯_____/¯¯¯¯¯¯¯|

< −wait |________/¯¯¯¯¯¯___|

< data | |

54

ASCII Art Timing Diagrams
name: byte−mode−read

spec: SPP

timing: 1−>2 0 35

timing: 3−>4 0 1000

timing: 6−>7 0 1000

 | 1 2 3 4 5 6 |

< printer−clock |¯¯¯_______/¯¯¯|

> host−busy |¯_____/¯¯¯¯¯¯¯|

> host−clock |¯¯¯¯¯¯¯¯¯___/¯|

< ack−data−req |_______________|

< −data−avail |_______________|

< x−flag |¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯|

< data | |

55

Working with ASCII Art Timing Diagrams

Easy to parse

Easy to work with

emacs mode?

emacs as logic analyser??

Declarative specification of behaviour/protocol

Produce pretty pictures via postscript

56-62

Deriving State Machines

Each column of a timing diagram defines the state of an interface at a
point in time.

By matching up the initial and final states of each diagram we can
build a state machine for the interface.

Example here is ’monadic’, though

63-65

Inferring Behaviour

Post hoc, ergo propter hoc

Extremely useful principle...

... as endorsed by David Hume

Can infer lots about behaviour, but do need to annotate with
code.

66-70

Code Annotation for Timing Diagrams

glue

to emulated system

to emulated peripheral

1-for-n cases

e.g. data in previous timing diagrams

exceptional conditions

e.g. timeouts

e.g. contention on bi-directional line

71-74

Doing It Again Today

would probably use:

mzscheme

qemu

75-76

Last Slide Brought To You By:

(define (go−demo)

 (let* ((frame (instantiate frame% ("#x80") (min−height 80) (min−width 80)))

 (2−lcd (instantiate 2−lcd% (frame))))

 (send frame show #t)

 (thread (lambda ()

 (qemu:startup

 (lambda ()

 (qemu:register−ioport−read 385 1 1

 (lambda (a)

 (send 2−lcd get−value)))

 (qemu:register−ioport−write 128 1 1

 (lambda (a d)

 (send 2−lcd set−value! d))))

 "−cdrom" "fdbootcd.iso")))))

77

