
Scheme in The Real World: A Case Study

Michael Bridgen, Noel Welsh, Matthias Radestock
LShift

Hoxton Point
6 Rufus Street

London, N1 6PE, UK
{mikeb, noel, matthias}@lshift.net

ABSTRACT
Scheme is the core technology in the back-end of the New Media
Knowledge web site developed by LShift. This case study exam-
ines how we integrated Scheme into a commercial web develop-
ment environment, and how we used unique features of Scheme to
simplify and speed up development.

1. INTRODUCTION
New Media Knowledge (NMK, [1]) is a business resource for indi-
viduals and companies working in interactive digital media. NMK
has recently acquired a grant to redevelop its web site. Lateral (a
design company) and LShift combined to deliver the work, with
Lateral creating the interface and LShift doing the back-end work.
This case study details the technology LShift used to implement the
website. In particular, we examine how we used Scheme to manage
complex user interaction via the World Wide Web.

2. OVERVIEW
The main functions of the NMK web site are:

• Provide a calendar of events that NMK run, and a means for
users to register for them; and

• Support a user community with contributed content.

The website is implemented as a standard three-tier system (see
figure 1). The main technologies used in each tier are:

• presentation: Cocoon [2], Castor [3] and XSLT [4]

• business logic: SISC [19], JavaBeans [5], Object-Relational
Bridge (OJB) [6]

• database: SQL Server [7]

The basis of the system is Java. This choice was a function of a
number of factors: There are a number of tools available for Java

that we have in-house experience with; Java has plenty of ready-
made libraries available for standard tasks, like database connec-
tivity and logging; Java application servers are well understood by
support staff. Using Java gives us a wide choice of tools; on the
other hand, most of these tools are more complicated than we re-
ally need. We are effectively trading some extra configuration and
glue-code work for a widely familiar, pre-fabricated platform.

2.1 Presentation
The presentation layer uses Cocoon and XSLT. We chose XSLT
as we have found it is usually close enough to HTML to be easily
modified by designers. Additionally, we’ve found XSLT signifi-
cantly faster and more enjoyable to develop with than other Java-
based web presentation layers (e.g. JSP [8], FreeMarker [9]).

Cocoon is used to map URLs to actions. Cocoon uses a configu-
ration document describing ’pipelines’ that pair request criteria (a
pattern for the URL, for example) with the procedure to generate
the response through a sequence of actions and transformations. In
the case of NMK, the most common steps are Scheme actions and
XSL transformations. The Cocoon pipelines are kept very short
at one or two stages maximum. This is a deliberate design deci-
sion; we have found programming with long Cocoon pipelines to
be tedious and error prone: XSLT has poor abstraction facilities
and long chains of XSLT transformations require maintaining too
many complex contracts. In the NMK system, the input to XSLT is
always XML representing a data object and the output is always a
view of that object, usually HTML.

There can be performance problems with XSLT but this is not ex-
pected to be an issue with the load the NMK website experiences.
Cocoon provides a fairly extensive infrastructure for caching in-
puts, stylesheets and results, and component pooling, which help
in any case.

The majority of the business logic is written in Scheme and runs
in the SISC Java-based Scheme interpreter. This case study con-
centrates on the business logic, which is where the most interesting
action takes place.

2.2 From database to XML
There are two tasks we have to take care of before we can write the
business logic:

• Getting data out of the database; and

• Transforming output into XML so the XSLT transformations
can work on it.



O
JB

D
B

SC
H

E
M

E
 W

O
R

K
FL

O
W

X
SL

T

store
cont.

retrieve
cont.

request user input

receive user input

submit form

to XML

to HTML

C
A

ST
O

R

JavaBean

k

U
SE

R
 A

G
E

N
T

C
O

C
O

O
N

retrieve rows

store and
store and retrieve JavaBeans

Figure 1: Overview of the components in the NMK website.

Each task is tedious to do manually. Luckily, there are ready-made
Java tools that do the job for us.

The Apache Object-Relational Bridge (confusingly, “OJB”) is used
to map JavaBeans to database tables. It requires a bit of initial con-
figuration, but once completed we only interact with a small API to
load and save data. All other code deals solely with manipulating
the JavaBeans. OJB provides a JDO [10] interface; we decided to
forgo this in favour of the simpler OJB-specific API as there are
only a few operations we need.

OJB also takes care of filling collections of dependent objects for
us, though this causes complications as we will see later.

The choice of SQL Server is arbitrary (NMK already had a SQL
Server license available). Through the use of the OJB object-
relational mapping the business logic is insulated from the details of
the underlying database. We could, in principle, use any database
with a JDBC driver [11].

Transforming data into XML is done using the Castor framework.
Castor generates JavaBean source code from XML Schema docu-
ments [12], as well as the code to marshal the JavaBeans to XML.
Castor requires a bit of up-front configuration and some compro-
mises on data types, but thereafter is invisible, as it generates stan-
dard JavaBeans. Most of the configuration is to get Castor to gener-
ate JavaBeans that are compatible with OJB (e.g., to use the correct
collection classes). We manipulate and eventually transform the
same JavaBeans we populate from the database. Castor allows us
to add fields that are not reflected in the database so this does not
limit our functionality.

3. SCHEME IN CONTEXT
Holding everything together is Scheme. Before discussing the par-
ticulars of the Scheme code, it is necessary to discuss how we inte-
grate Scheme with Java and Cocoon.

3.1 The SISC Foreign Function Interface
SISC has a comprehensive Java Foreign Function Interface (FFI).
Java classes can be instantiated and methods on those classes called
as normal generic functions in SISC’s object system. The integra-
tion with JavaBeans is slightly different, though as we will see later
this offers benefits we can exploit. In short, if an object is called
with a list of symbols, those symbols are interpreted as accessor
functions to call on the object and successive objects returned from
previous calls. So

(bean ’(field1 field2 . . . ))

is equivalent to the Java code

bean . g e t F i e l d 1 ( ) . g e t F i e l d 2 ( ) . . . ;

When we call a bean with a list of symbols and a value, that value
is stored into the bean. So

(bean ’(field1) value)

is equivalent to the Java code

bean . s e t F i e l d 1 ( v a l u e ) ;

Java methods are incorporated within SISC’s generic procedures
mechanism:

;; define a generic procedure for a Java method ...
(define method-one

(generic-java-procedure ’|methodOne|))

;; and now call it
(method-one obj)

In SISC, Java methods are dispatched on the runtime type of all
arguments, not just the this argument. This means that we can do



some things in Scheme with Java methods that are much harder
to accomplish in Java alone. For access control, for instance, we
implement a class that has a static method for each of (predicate×
class), where the predicates are like

s t a t i c boolean i s E d i t o r ( A r t i c l e o , User u ) { . . . }
s t a t i c boolean i s E d i t o r ( Meet ing o , User u ) { . . . }

If we declare isEditor as a generic procedure, then using it with
different objects will ’just work’. In contrast, in the Java code that
prepares content for indexing there are overloaded methods for cre-
ating index entries, but we have to do the dispatching ourselves.
Java overloading uses the static type of the arguments, so to encode
this pattern in Java requires a chain of instanceof tests1.

p u b l i c Document c rea t eDocumen t ( A r t i c l e o ) {
. . .

}
p u b l i c Document c rea t eDocumen t ( Meet ing o ) {

. . .
}
p u b l i c Document c rea t eDocumen t ( User o ) {

. . .
}

p u b l i c Document c rea t eDocumen t ( I n d e x a b l e o ) {
re turn

( o i n s t a n c e o f A r t i c l e ) ?
c rea t eDocumen t ( ( A r t i c l e ) o ) :

( o i n s t a n c e o f Meet ing ) ?
c rea t eDocumen t ( ( Meet ing ) o ) :

( o i n s t a n c e o f User ) ?
c rea t eDocumen t ( ( User ) o ) :

n u l l ;
}

The generic procedure system in SISC is similar in feeling to that
in Dylan [13] and CLOS [14].

SISC also supports defining classes that implement Java interfaces,
by using the Java reflection API to create dynamic proxies. This is
especially useful for creating event listeners, as these usually end
up being anonymous classes. We can use a proxy with a closure as
a listener to achieve the same effect; for example, using the Swing
Timer class to schedule re-indexing:

(define-java-proxy (timer-task fn)
(<swing.action-listener>)
(define (action-performed proxy event)

(fn event)))

(start (java-new <swing.timer>
(->jint 3600000)
(timer-task

(lambda (proxy event)
(re-index)))))

3.1.1 SISC and J2EE
To provide a persistent environment for the interpreter, we use the
SISC servlet. The SISC servlet, as a standard feature, runs a REPL
on a nominated port. Being able to run arbitrary code in the same
context as the application is extremely handy for debugging and
incrementally developing code in a running system.

The J2EE application server includes an application context that
can be configured at deployment time. This is useful for storing
1or a modified virtual machine - see [17]

application variables, like database connections, and deployment-
specific file locations. All that is needed are a few wrappers to make
it convenient in Scheme:

(define initial-ctx (make <javax.naming.InitialContext>))
(define local-ctx (lookup initial-ctx (->jstring "java:comp/env")))
(define (lookup-context-var name)

(->string (lookup local-ctx (->jstring name))))

(define ∗SECRET-KEY∗ (lookup-context-var "secretKey"))

3.2 Transactions and the Back Button
A core part of the NMK website is presenting data to the user and
allowing them to edit it. The editing cycle is basically structured
as edit ↔ preview → commit. Within each cycle we want multiple
browsers and the back button to work as expected. For a full de-
scription of the problem and general solution, see [20], and more
recently [18]. There are a few issues here to get this all working
correctly.

3.2.1 Scheme, interrupted
Naturally we use continuations so we can structure the program
code clearly despite the inverted control of HTTP. We hide the con-
tinuations behind a channel abstraction. The channel API boils
down to:

;; channel × symbol × bean → symbol × input
;;
;; Go get some data from the user
(channel-call channel action data)

;; Send some data to the user (never returns)
(channel-send channel action data)

The function channel-call provides the main abstraction for com-
municating with the user. It stuffs away the continuation in the
user’s HTTP session, and hands the (probably incomplete) Jav-
aBean to Cocoon along with a stylesheet to use (the action).
Cocoon serialises the JavaBean and runs it through the stylesheet.
Usually the stylesheet produces a form, populated with data from
the XML-ised JavaBean; submitting the form picks up the contin-
uation from the HTTP session and takes up where it left off. This
corresponds to the ’shortcut’ in figure 1. We number the continua-
tions per user and use the number as part of the URL for subsequent
requests, so the user can branch at or revisit any point. This is an
effective way of cloning similar content, for instance.

Scheme continuations get stored in the user session of the J2EE
[15] application server. Persistence is accomplished by simply
storing the serialised continuations in a database; many applica-
tion servers deal with session migration by serialising the sessions
and restoring them on the migration target. This means SISC web
applications can be made resilient and load-balanced by simply
configuring the appropriate session persistence/migration features
of the application server. We have run experiments with Tomcat
[16] involving restarting of the application server in the middle of
a workflow, and it all works beautifully.

Using continuations in this way we are effectively righting the in-
verted interaction that HTTP tries to force on us. The usual model
is to wait for the user to ask for something, figure out what they
were trying to accomplish and provide an appropriate response. In
our righted model, when we need data from the user, we just ask for



it - at least from the Scheme programmer’s point of view. The fol-
lowing pseudo-code shows the advantages of this system - here we
display some data to the user and save it following their approval:

(let-values (((action input) (channel-call channel ’show data)))
(save data))

We do not need to do any parsing of URLs or form parameters to
figure out what state the computation is at.

There are some implications of storing the continuation in the user
session that have to be worked around:

• The continuation is only available while the user session
lasts. We want continuations to expire at some point, and
the typical session lifetime of around 30 minutes is reason-
able. We keep workflow steps short to avoid the situation in
which the user’s session times out while they are filling in a
form.

• When a user session is serialised, the first continuation is ex-
pensive as the closure captures all the lexical environments
up the call-chain minus the top one; subsequent continua-
tions to be serialised are relatively cheap, as they will share
references. SISC only serialises the names of top-level defi-
nitions, so there is no chance of inadvertently serialising the
entire state of the application.

• User sessions are isolated - we must avoid mutating
application-level objects, so that users cannot cannot have
different application states captured in their stored continua-
tions.

3.2.2 SISC and Cocoon
The Scheme code is invoked by Cocoon, using a small class
(SchemeAction) that implements one of the Cocoon plug-in inter-
faces. SchemeAction uses a SISC interpreter to evaluate a specified
function. In the Cocoon configuration, for example, we declare a
workflow for adding an article:
<map:match p a t t e r n =” a r t i c l e / add /∗ ”>

<m a p : c a l l r e s o u r c e =” scheme−workf low ”>
<m a p : p a r a m e t e r name=” s r c ”

v a l u e =” a r t i c l e −add ” />
<m a p : p a r a m e t e r name=” kon t ” v a l u e =”{1} ” />

< / m a p : c a l l>
< / map:match>

The pattern attribute maps a URL starting with article/add to
workflow. Whatever appears where the wildcard is, is passed to
Scheme as a ’continuation number’ (kont)so it can retrieve the
continuation from the user’s session. src parameter corresponds
to the Scheme procedure article-add-start.

3.2.3 Avoid Mutation
Continuations make supporting multiple browsers and the back but-
ton easy, but we must be careful how we manage state. If we mutate
values that could be captured by a continuation the changes will
persist when the user moves backward. However our infrastructure
relies on getting and setting properties in JavaBeans, an inherently
stateful operation. Hence we always clone any JavaBeans we are
using, and only update values in the clones.

This also applies to collections of dependent objects. Unfortu-
nately, Java cloning operations are shallow so we have to clone
collections ourselves:

(define (meeting-clone meeting)
(let ([meeting (clone meeting)])

(meeting ’(meeting-file-as-reference)
(clone (meeting ’(meeting-file-as-reference))))

meeting))

3.3 Code structure
We can divide the interesting Scheme code into three types of func-
tion:

• action - these do the interaction with the user, and dispatch
to other actions or return depending on the result; and

• population - these take the user input and fill in the fields of
a JavaBean.

• workflow - these fulfill the contract with Cocoon, usually by
calling an action;

3.3.1 Actions: There and Back Again
Actions perform interaction with the user. All actions have the
same type:

bean × environment × channel → bean

This enables us to compose actions as simply as making a function
call. A simple example is:

(define (meeting-preview meeting env channel)
(with-input-from-channel (channel ’preview meeting => input)

[ok meeting]
[edit (meeting-edit meeting env channel)]
[cancel #f]))

We have defined a macro, with-input-from-channel, that encapsu-
lates the common pattern of using channel-call - get some data
from the user, then dispatch to another action or return based on
the button they pushed.

Notice the call to meeting-edit, which hides an interaction with the
user. We use this facility a lot to go on ’excursions’: reusable,
atomic interactions such as uploading a file. We can make these
interactions as complex as we need and control will return to where
we left off. In effect we have function call semantics just like in a
normal program.

3.3.2 Population
Filling a JavaBean with data from the database or a web form is
a very common operation. For the former we use OJB and a few
wrappers in Scheme for querying, updating and deleting objects.
All database actions are done at the beginning or end of the work-
flow, to keep it transactional.

(define (article-add-start env channel input)
(let ([article (make <nmk.Article>)])

(article ’(group) (group-info-by-id (input-parameter input ’id)))
(let ([article (article-add article env channel)])

(if article
(begin

(create-object article)
(channel-send channel ’confirm-add article))

(channel-send channel ’cancel jnull)))))



Here, the call to article-add populates the JavaBean, asking the
user for more information in the process; once it has a result, it
either saves the JavaBean to the database and sends a confirmation
message to the user, or sends a cancel message.

We can use some features of Scheme and the SISC FFI to help us
out with populating JavaBeans from user input. There are three
main steps:

• Extract data from the request parameters

• Convert and validate the data if necessary

• Populate the JavaBean with converted data

A few simple utilities suffice:

;; (string → any) × (list-of symbol) × input
;; → (list-of any)
;;
;; Given a list of field names, returns a list of the inputs with
;; those names, converted by the conversion function.
(define (input-parameters/conversion conversion fields input)
(map
(lambda (field)

(conversion (input-parameter input field)))
fields))

;; bean × (list-of symbol) × (list-of (union any #f))) → bean
;;
;; Populate the given fields of the bean with the given converted
;; values
(define (fill-object obj fields values)

(for-each (lambda (field value)
(if value

(obj field value)))
(map list fields)
values)

obj)

With these two utilities all we need to supply is the list of fields for
each JavaBean, and the conversion functions to apply.

(define (meeting-edit-fill meeting username input)
(define text-fields

’(title abstract recurrence venue-title venue-description
speakers sponsor-introduction |reportURL|))

(define markup-fields ’(body))
(define time-fields ’(start-time finish-time))
. . .
(let ([meeting (meeting-clone meeting)])

(meeting ’(modified) (make <DateTime>))
(fill-meeting meeting ->jstring text-fields input)
(fill-meeting meeting string->markup markup-fields input)
(fill-meeting meeting (safe-conversion string->jtime)

time-fields
input)

. . .
(meeting ’(modified) (make <DateTime>))
meeting))

Converting between input strings and XML Schema/Castor, Java
and JDBC types occasionally proves troublesome. In particular, ex-
pressing times (of the day) in each has its own peculiarities, leading
to some circuitous functions

(define (string->jtime s)
(if (string-null? s)

(java-null <castor.Time>)
(let ([res (make <castor.Time>)]

[c (get-instance <Calendar>)])
(c ’(time) (parse time-format (->jstring s)))
(for-each (lambda (set-field get-field)

(res (list set-field)
(->jshort (->number

(jget c (<Calendar> get-field))))))
’(hour minute second)
’(|HOUR OF DAY| |MINUTE| |SECOND|))

(set-utc res)
res)))

3.3.3 Error handling and reporting
We distinguish between application errors and workflow errors.
The former are run-time errors, and percolate through to the nor-
mal error mechanisms through SISC to Java to be reported by Co-
coon. The latter are errors in the usage of the application; e.g., a
user trying to edit something they are not permitted to edit. Work-
flow errors are wrapped in a JavaBean and sent through the normal
Cocoon channel. We use Java resource bundles to localise the error
messages, and the resource file to use is stored in an application
variable so it can be set at deployment time.

3.3.4 Don’t Repeat Yourself
A side-effect of using Scheme alongside other languages is that it
is easy to end up with duplicated procedures.

Our strategy for avoiding duplication with Java was to write the
common part in Java and refer to it in Scheme. For example, Co-
coon is configured to map URL patterns corresponding to work-
flows to Scheme actions, and other URLs to Java classes that query
for JavaBeans directly. This replicates some query-building re-
quirements across Scheme and Java; we have minimised this by
putting common query fragments into static methods of a utility
class. We use a class QueryHelper to get query criteria in Java and
Scheme:

C r i t e r i a c r i t =
QueryHe lpe r . makeDa teAndTagCr i t e r i a (

t h i s . d a t e F i e l d ,
t h i s . t a g F i e l d ,
t h i s . da t e ,
t h i s . t a g ) ;

OjbQueryImpl que ry =
new OjbQueryImpl ( e x t e n t C l a s s , c r i t ) ;
re turn que ry ;

(define (object-by-date-and-tag
type
date-field
tag-field
date
tag)

(object-by-criteria
type
(make-date-and-tag-criteria

<nmk.QueryHelper>
(->jstring date-field)
(->jstring tag-field)
(to-date (string->jdate date))
(->jstring tag))))



Another place that code can be duplicated is in the symmetry be-
tween presenting actions and restricting actions; we do not want
to give the user choices that they cannot follow through on. In the
NMK system, the presentation is done with XSLT while the re-
striction is computed in Scheme. Luckily, our channel abstraction
lets us pass parameters to the XSLT, so we can calculate both in
Scheme. Further, we can do it using the same, inlined data struc-
ture.

(define (article-preview-actions edit-func preview-func)
(define (article-change-status-helper status)

. . . )
(define (article-edit-helper)

. . . )
(let∗ ([administrator-and-editor-pending-or-wip

‘((approve . ,(article-change-status-helper ’live))
(comment . ,(article-change-status-helper ’wip))
(later . ,(article-change-status-helper ’pending))
(reject . ,(article-change-status-helper ’hidden))
(edit . ,(article-edit-helper))
(cancel . ,(lambda args #f)))]

[administrator-and-editor-actions
‘((pending . ,administrator-and-editor-pending-or-wip)

(wip . ,administrator-and-editor-pending-or-wip)
(live
(edit . ,(article-edit-helper))
(approve . ,(article-change-status-helper ’live))
(save . ,(article-change-status-helper ’wip))
(remove . ,(article-change-status-helper ’hidden))
(pull . ,(article-change-status-helper ’pending))
(cancel . ,(lambda args #f))))]

[user-pending-or-wip
‘((save . ,(article-change-status-helper ’wip))

(submit . ,(article-change-status-helper ’pending))
(edit . ,(article-edit-helper))
(cancel . ,(lambda args #f)))])

‘((administrator . ,administrator-and-editor-actions)
(editor . ,administrator-and-editor-actions)
(author (pending . ,user-pending-or-wip)

(wip . ,user-pending-or-wip))))

Beyond all the quasi-quoting, it is simply a structure with the al-
lowed actions per user type and the resulting function to call. With
this data structure in hand, we can ask what things is the user al-
lowed to do:

(define (deep-assq keys alist)
(and (pair? alist)

(let ([key-car (car keys)]
[key-cdr (cdr keys)])

(cond [(assq key-car alist)
=> (lambda (val)

(if (null? key-cdr)
(cdr val)
(deep-assq key-cdr (cdr val))))]

[else #f]))))

(define (available-actions user)
(let ([actions

(deep-assq (list (user-role user) (article-status article))
preview-actions)])

(and actions (map car actions))))

... and dispatch to the appropriate function:

(let ([proc (deep-assq (list (user-role user)
(article-status article)
action)

preview-actions)])
(and proc

(proc article env channel)))

4. CONVENTIONS
Applying consistent conventions throughout the code base makes
it much easier to understand the code. Some of the conventions we
used include:

A noun-verb naming scheme, and standard verbs (add, edit, re-
move). The code uses consistent names like meeting-edit and
article-preview, and the URLs to access these functions are simply
/meeting/<id>/edit and /article/<id>/preview re-
spectively. In addition to the readability benefits this provides a
weak form of namespaces, as we do not use the SISC module sys-
tem.

A common pattern for initiating actions. Each workflow begins as a
function named <action>-start which initialises the JavaBean and
then calls the actual action (named using our noun-verb scheme).
We leverage this convention to reduce the integration with Cocoon
to supplying a list of action names, which we process with a macro.

5. CONCLUSION
Our experience with Scheme has been very positive and the NMK
back-end is known as one of the cleanest and best designed projects
at LShift. We put our success down to two points:

Using existing Java frameworks where possible. We do not write
any code to deal with the drudge work of connecting to a database
or generating HTML. Interfacing with Java is occasionally painful
(using the date/time API, for example) but in general it is more than
worth it. Additionally we can express the user interface as XSLT,
which web designers are already familiar with, by integrating with
Cocoon.

The features of the Scheme language. Continuations allow us to
work around HTTP’s inverted control, and write code in a natural
style. Higher-order functions and the SISC FFI allow us to write
very expressive, compact code. Writing functions to fit some stan-
dard contracts means we can compose units of user interaction into
complex workflows.

6. REFERENCES
[1] New Media Knowledge Website, http://www.nmk.co.uk/.

[2] Cocoon website, http://xml.apache.org/cocoon2/.

[3] Castor website, http://castor.exolab.org/.

[4] XSLT Recommendation, http://www.w3.org/TR/xslt.

[5] The JavaBeans specification is available from
http://java.sun.com/products/ejb/docs.html.

[6] OJB website, http://db.apache.org/ojb/.

[7] Microsoft SQL Server product information,
http://www.microsoft.com/sql/.

[8] The JSP specification is available from
http://java.sun.com/products/jsp/download.html#specs.



[9] Freemarker website, http://freemarker.sourceforge.net/.

[10] The JDO specification is available from
http://www.jcp.org/aboutJava/communityprocess/first/jsr012/.

[11] The JDBC specification is available from
http://java.sun.com/products/jdbc/download.html.

[12] Information about XML Schema can be found at
http://www.w3.org/XML/Schema.

[13] Detail at
http://www.gwydiondylan.org/drm/drm 48.htm#HEADING48-
0.

[14] Detail at http://www.lisp.org/table/references.htm#ansi.

[15] Information on Java 2 Enterprise Edition at
http://java.sun.com/j2ee/docs.html.

[16] Tomcat website, http://jakarta.apache.org/tomcat/index.html.

[17] C. Dutchyn. Multi-dispatch in the java virtual machine:
Design and implementation, 2001.

[18] P. Graunke, R. Findler, S. Krishnamurthi, and M. Felleisen.
Modeling web interactions, 2003.

[19] S. G. Miller. SISC Scheme Interpreter website,
http://sisc.sourceforge.net.

[20] C. Queinnec. The influence of browsers on evaluators or,
continuations to program Web servers. ACM SIGPLAN
Notices, 35(9):23–33, 2000.


